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Introduction

Backgrounds:
• Interactive command shells, especially Unix shells, which provide a powerful interface for system administration, 

development, and maintenance tasks, can be exploited by attackers to gain unauthorized access, escalate 
privileges, avoid defense detection, collect sensitive data, and manipulate systems. 

• Previous studies utilized various techniques for anomaly detection in command shell sessions, ranging from simple
rule-based methods to more complex machine learning algorithms, rely heavily on predefined features or 
labeled data from security experts for training supervised models. 

• Recent advances in deep learning and natural language processing, in particular transformer-based models, 
such as BERT and GPT, have the potential to enhance computer security by enabling more effective and adaptable 
anomaly detection systems that can learn from large-scale, diverse data sources.

Research Background
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Introduction

Motivations:
• In enterprise production environments, access to command shells is treated as a privileged activity because of 

the potential for misuse of system commands.

• Enterprises can implement rule-based detection using computer security frameworks. However, due to the 
volume, length, and complexity of shell sessions, manual detection of outliers is impractical.

• The anomaly detection model can :
• Automatically identify command patterns that are outliers with respect to the overall set of sessions, which 

would not be detected by the rule-based approach, and 
• Assign anomaly scores to sessions, where sessions with high anomaly scores can be prioritized for further 

investigation. 

Research Motivations
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Introduction

Main contributions:
• We apply a comprehensive anomaly detection framework for Unix shell sessions based on the pretrained 

DistilBERT model and ensemble anomaly detectors, addressing an important problem in computer security.

• We conduct experiment and demonstrate the effectiveness of unsupervised approach using an ensemble 
method to compute anomaly scores for a large-scale enterprise dataset, enabling the identification of suspicious 
activity without extensive manual labeling.

• We evaluate the performances of supervised fine-tuned models on a few-shot set of labeled sessions, highlighting 
the adaptability and accuracy of our supervised approach.

Research Contributions
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Data

• Data: a large-scale, unlabeled dataset of Unix shell commands from real operating system users.

• The raw data used includes 90 days of Unix keystroke sessions from over 15,000 users, which have about 3 
million activity objects, where around 2.4 million objects are non-empty interactive sessions. 

• The raw data have several data characteristics:
• Mixed shell prompts, command inputs, and command outputs, 
• Various shell prompts across sessions and within session, 
• Truncated long command lines with varying line lengths, 
• Various command aliases across sessions, 
• Mixed background process outputs with prompts and inputs, and
• Missed backspaces and tab keys. 

• We developed heuristics to extract and clean commands from the raw data. After extracting commands and 
dropping duplicates, we obtain 1.15 million sessions.

Data Description and Characteristics
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Data

Prompt extraction: 
• A list of 140 common Unix commands and a list of 

prompt terminal symbols ($, #, >) are created. 

• For each input line, the first occurring prompt 
terminal symbol is located, and the following word is 
tested against the common command set. 

• If this word is a known common command, the 
prompt is saved. 

Command extraction:
• Known prompts from this session are searched and 

then the command lines after the prompt are 
extracted. 

• Text editor buffers are removed and wrapped 
multiple-line commands are concatenated. 

Command cleaning: 
• Several filters are applied:
• Removing command lines with error messages,
• Dropping command editing buffers and shell 

completions, 
• Deleting long consecutive spaces and over-

repeated characters, 
• Filtering command names with regular 

expressions, 
• Masking numbers and special words, and
• Cleaning cyclic commands usually generated by 

loops from shell scripts. 

Data Preprocessing
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Unsupervised Approach

• The unsupervised approach involves pretraining a 
DistilBERT on Unix shell commands and 
constructing an ensemble anomaly detector, 
which was first proposed by CrowdStrike® for 
command lines from various platforms. 

• DistilBERT is selected due to its balance of 
performance and efficiency. The WordPiece
tokenizer with a dictionary size of 30,000 is selected 
and trained for tokenizing the Unix sessions. 

• The DistilBERT is pretrained for the masked 
language modeling (MLM) task to capture the 
inherent structure and dependencies within 
command sequences. The last hidden states are 
used as the contextual embeddings of the Unix 
shell sessions. 

• Four outlier detectors, the principal component 
analysis (PCA), isolation forest (IF), copula-based 
outlier detection (COPOD), and autoencoders (AE), 
are trained with the session embeddings, and their 
decision scores are normalized for each outlier 
detector. 

• For each session, all four decision scores are 
averaged to get the final anomaly score of that 
session. Sessions with high anomaly scores are 
considered outliers, which may contain unusual 
command syntaxes or patterns deviant from the 
overall collection of sessions. 

DistilBERT Pretraining
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Unsupervised Approach Results
Distribution of Anomaly Scores
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Unsupervised Approach Results
Distribution of Anomaly Scores
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Unsupervised Approach Results
Distribution of Anomaly Scores
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Supervised Approach

• The supervised part of our approach involves fine-
tuning the pretrained DistilBERT model with 
labeled data to improve its performance in 
distinguishing between normal and suspicious 
command sequences as a binary classifier. 

• We fine-tune the pretrained DistilBERT with 
SetFit (Sentence Transformer Fine-tuning), which is 
an efficient and prompt-free framework for few-shot 
fine-tuning of sentence transformers. 

• We create a table of suspicious keywords 
developed based on Uptycs’s work to cover MITRE 
ATT&CK® techniques commonly used by attackers. 

• The suspicious keywords are searched in each Unix 
shell sessions, and those sessions with the number 
of unique suspicious keywords higher than the 
threshold are considered as anomalies. 

• We create regular expressions to tag sessions with 
more ATT&CK techniques, which are used for 
session annotations. 

• We evaluate the performance of the anomaly 
detection approach by calculating precision, recall, 
and F1 score.

Pretrained Model Fine-Tuning
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Supervised Approach

ATT&CK 
Technique ID

ATT&CK Technique Name Suspicious Keywords

T1018 Remote System Discovery arp, ping, ip, hosts

T1082 System Information Discovery df, uname, hostname, env, lspci, lscpu, 
lsmod, dmidecode, systeminfo

T1040 Network Sniffing tcpdump, tshark
T1489 Service Stop kill, pkill
T1105 Ingress Tool Transfer curl, scp, sftp, tftp, rsync, finger, wget
T1222.002 File and Directory Permissions Modification: 

Linux and Mac File and Directory Permissions 
Modification

chown, chmod, chgrp, chattr

T1003.008 OS Credential Dumping: /etc/passwd and 
/etc/shadow

passwd, shadow

T1070.003 Indicator Removal: Clear Command History .bash_history, HISTFILE, HISTFILESIZE

Session Labeling (Some Examples)
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Supervised Approach Results
Evaluation Results of Supervised Models

Class Number of 
Unique 
Suspicious 
Keywords

Number of 
Samples

Training 
Set 
(90%)

Testing 
Set (10%)

Normal = 0 790,363 711,327 79,036
Abnormal >= 3 28,413 25,571 2,842
Abstaine
d 
(no label)

In between 335,322 - -

Total - 1,154,098 736,898 81,878
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Model Logistic Regression Fine-tuned DistilBERT Fine-tuned DistilBERT with 
SetFit

Number of 
Samples per 
Class

Precisio
n

Recall F1 Score Precisio
n

Recall F1 Score Precisio
n

Recall F1 Score

16 0.1464 0.7860 0.2454 0.1632 0.5578 0.2513 0.1569 0.8287 0.2622
32 0.1625 0.8248 0.2711 0.1995 0.6977 0.3036 0.2059 0.8930 0.3331
64 0.1713 0.8754 0.2862 0.1625 0.8418 0.2716 0.2712 0.9484 0.4210
128 0.1922 0.8849 0.3155 0.1703 0.9098 0.2864 0.3909 0.9758 0.5563
256 0.2070 0.8890 0.3356 0.3230 0.9663 0.4840 0.4819 0.9850 0.6459
512 0.2308 0.9027 0.3676 0.4900 0.9774 0.6524 0.5845 0.9866 0.7337
1024 0.2631 0.9188 0.4090 0.6483 0.9854 0.7819 0.7134 0.9900 0.8290
2048 0.2944 0.9267 0.4467 0.7534 0.9899 0.8555 0.7934 0.9894 0.8802

Supervised Approach Results
Evaluation Results of Supervised Models
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Supervised Approach Results
Session Numbers of MITRE ATT&CK® Tactics and Techniques
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Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Remote command execution of transient web server with potential for data exfiltration.
Details: Line 2: launch transient web server on remote host. 
Line 3: terminate the server. 
Line 4 and 6: MITRE ATT&CK tags inserted by processing pipeline. 
Line 5: transfer data from web server using wget.
Activity id = *1e1BD9.  Anomaly score = 1.8919. Suspicious keywords = [kill: 3, wget: 21]
1
2

3

4
5
6
7

<lines removed>
salt "WH" cmd.run "python -m SimpleHTTPServer # --directory /sqldata/ms_backups/" 
bg=trues/WH_test_db_FU
salt "WH" cmd.run "ps aux | grep '[S]impleHTTPServer #' | awk '{print $#}' |xargs kill –9 
"/WH_test_db_FUWH:
-> [T1057: Process Discovery, T1489: Service Stop]
salt "WH" cmd.run "cd /sqldata/dbmigration;wget http://<host:port>//sqldata/ms_backups/WH_test_db_FU
-> [T1105: Ingress Tool Transfer]
<lines removed>
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Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Potential data exfiltration and credential exposure subject to discovery via process discovery.
Activity id = *1c01C8. Anomaly score = 1.9754. Suspicious keywords = [curl: 12]
1
2
3
4

<lines removed>
curl -T server_support.tar.gz -u<username>:<plaintext_credentials> <externalhost> /dropzone/uploads
-> [T1105: Ingress Tool Transfer]
<lines removed>
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Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Disk clear and boot load configuration changes.
Details: Lines 1, 7, 10 omitted for brevity.  Line 3 and 5 are automatic annotations added by pipeline. 
Line 2: remote command to check system details.  Line 4: remote command to clear disk prior to install. 
Line 6: restart Hadoop monitoring agent.  Line 8, 9: modify boot loader.
Activity id = *b41A0E.  Anomaly score = 3.1271. Suspicious keywords = [chmod: 2, df: 1, wget: 1]
1
2
3
4
5

6
7
8
9

10

< lines removed >
ansible all -i <INVENTORY> -m shell -a "uptime;grep Start /etc/INSTALL_CLASS;cat /etc/redhat-release" -o
-> [T1082: System Information Discovery]
ansible all -i <INVENTORY> -m shell -a "cd /root;chmod HFF diskwipe.sh;./diskwipe.sh" -b
-> [T1222.002: File and Directory Permissions Modification - Linux and Mac File and Directory Permissions 
Mod]
ansible all -i <INVENTORY> -m shell -a "/sbin/service ambari-agent restart"  -become -b
<lines removed>
ansible all -i <INVENTORY> -m shell -a "cd /boot/grub#;cp -p grub.cfg grub.cfg.bkp"  -b
ansible all -i <INVENTORY> -m shell -a "/sbin/grubby --args=transparent_hugepage=never --update-
kernel=ALL "  -b
<lines removed>
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Conclusions

• Detection of anomalies for interactive command shells is needed as a cybersecurity safeguard because 
privileged access at the shell level provides the opportunity for a range of attacks that threaten critical enterprise 
infrastructure, data, and services. 

• We present the first published results on keystroke anomaly detection using an enterprise-scale dataset 
captured from production systems over a 90-day period with 1.15 million sessions and over 15 thousand users. 

• We presented the first experimental results of using the transformer model, specifically DistilBERT, for 
keystroke log anomaly detection of Unix shells, in both unsupervised and supervised approaches. 

• We tagged each session using two existing schemes, the MITRE ATT&CK® techniques and suspicious 
keywords, where Unix shell sessions with high anomaly scores were then cross-checked with the tags as part of 
validating the utility of the anomaly model for operations uses. 

Research Summary

Thanks for Listening!
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