
Zefang Liu, John Buford
JPMorgan Chase

Anomaly Detection of Command Shell Sessions based on
DistilBERT: Unsupervised and Supervised Approaches
Conference on Applied Machine Learning in Information Security (CAMLIS)
October 19-20, 2023, Arlington, VA

Introduction

Backgrounds:
• Interactive command shells, especially Unix shells, which provide a powerful interface for system administration,

development, and maintenance tasks, can be exploited by attackers to gain unauthorized access, escalate
privileges, avoid defense detection, collect sensitive data, and manipulate systems.

• Previous studies utilized various techniques for anomaly detection in command shell sessions, ranging from simple
rule-based methods to more complex machine learning algorithms, rely heavily on predefined features or
labeled data from security experts for training supervised models.

• Recent advances in deep learning and natural language processing, in particular transformer-based models,
such as BERT and GPT, have the potential to enhance computer security by enabling more effective and adaptable
anomaly detection systems that can learn from large-scale, diverse data sources.

Research Background

1

Introduction

Motivations:
• In enterprise production environments, access to command shells is treated as a privileged activity because of

the potential for misuse of system commands.

• Enterprises can implement rule-based detection using computer security frameworks. However, due to the
volume, length, and complexity of shell sessions, manual detection of outliers is impractical.

• The anomaly detection model can :
• Automatically identify command patterns that are outliers with respect to the overall set of sessions, which

would not be detected by the rule-based approach, and
• Assign anomaly scores to sessions, where sessions with high anomaly scores can be prioritized for further

investigation.

Research Motivations

2

Introduction

Main contributions:
• We apply a comprehensive anomaly detection framework for Unix shell sessions based on the pretrained

DistilBERT model and ensemble anomaly detectors, addressing an important problem in computer security.

• We conduct experiment and demonstrate the effectiveness of unsupervised approach using an ensemble
method to compute anomaly scores for a large-scale enterprise dataset, enabling the identification of suspicious
activity without extensive manual labeling.

• We evaluate the performances of supervised fine-tuned models on a few-shot set of labeled sessions, highlighting
the adaptability and accuracy of our supervised approach.

Research Contributions

3

Data

• Data: a large-scale, unlabeled dataset of Unix shell commands from real operating system users.

• The raw data used includes 90 days of Unix keystroke sessions from over 15,000 users, which have about 3
million activity objects, where around 2.4 million objects are non-empty interactive sessions.

• The raw data have several data characteristics:
• Mixed shell prompts, command inputs, and command outputs,
• Various shell prompts across sessions and within session,
• Truncated long command lines with varying line lengths,
• Various command aliases across sessions,
• Mixed background process outputs with prompts and inputs, and
• Missed backspaces and tab keys.

• We developed heuristics to extract and clean commands from the raw data. After extracting commands and
dropping duplicates, we obtain 1.15 million sessions.

Data Description and Characteristics

4

Data

Prompt extraction:
• A list of 140 common Unix commands and a list of

prompt terminal symbols ($, #, >) are created.

• For each input line, the first occurring prompt
terminal symbol is located, and the following word is
tested against the common command set.

• If this word is a known common command, the
prompt is saved.

Command extraction:
• Known prompts from this session are searched and

then the command lines after the prompt are
extracted.

• Text editor buffers are removed and wrapped
multiple-line commands are concatenated.

Command cleaning:
• Several filters are applied:
• Removing command lines with error messages,
• Dropping command editing buffers and shell

completions,
• Deleting long consecutive spaces and over-

repeated characters,
• Filtering command names with regular

expressions,
• Masking numbers and special words, and
• Cleaning cyclic commands usually generated by

loops from shell scripts.

Data Preprocessing

5

Unsupervised Approach

• The unsupervised approach involves pretraining a
DistilBERT on Unix shell commands and
constructing an ensemble anomaly detector,
which was first proposed by CrowdStrike® for
command lines from various platforms.

• DistilBERT is selected due to its balance of
performance and efficiency. The WordPiece
tokenizer with a dictionary size of 30,000 is selected
and trained for tokenizing the Unix sessions.

• The DistilBERT is pretrained for the masked
language modeling (MLM) task to capture the
inherent structure and dependencies within
command sequences. The last hidden states are
used as the contextual embeddings of the Unix
shell sessions.

• Four outlier detectors, the principal component
analysis (PCA), isolation forest (IF), copula-based
outlier detection (COPOD), and autoencoders (AE),
are trained with the session embeddings, and their
decision scores are normalized for each outlier
detector.

• For each session, all four decision scores are
averaged to get the final anomaly score of that
session. Sessions with high anomaly scores are
considered outliers, which may contain unusual
command syntaxes or patterns deviant from the
overall collection of sessions.

DistilBERT Pretraining

6

Unsupervised Approach Results
Distribution of Anomaly Scores

7

Unsupervised Approach Results
Distribution of Anomaly Scores

8

Unsupervised Approach Results
Distribution of Anomaly Scores

9

Supervised Approach

• The supervised part of our approach involves fine-
tuning the pretrained DistilBERT model with
labeled data to improve its performance in
distinguishing between normal and suspicious
command sequences as a binary classifier.

• We fine-tune the pretrained DistilBERT with
SetFit (Sentence Transformer Fine-tuning), which is
an efficient and prompt-free framework for few-shot
fine-tuning of sentence transformers.

• We create a table of suspicious keywords
developed based on Uptycs’s work to cover MITRE
ATT&CK® techniques commonly used by attackers.

• The suspicious keywords are searched in each Unix
shell sessions, and those sessions with the number
of unique suspicious keywords higher than the
threshold are considered as anomalies.

• We create regular expressions to tag sessions with
more ATT&CK techniques, which are used for
session annotations.

• We evaluate the performance of the anomaly
detection approach by calculating precision, recall,
and F1 score.

Pretrained Model Fine-Tuning

10

Supervised Approach

ATT&CK
Technique ID

ATT&CK Technique Name Suspicious Keywords

T1018 Remote System Discovery arp, ping, ip, hosts

T1082 System Information Discovery df, uname, hostname, env, lspci, lscpu,
lsmod, dmidecode, systeminfo

T1040 Network Sniffing tcpdump, tshark
T1489 Service Stop kill, pkill
T1105 Ingress Tool Transfer curl, scp, sftp, tftp, rsync, finger, wget
T1222.002 File and Directory Permissions Modification:

Linux and Mac File and Directory Permissions
Modification

chown, chmod, chgrp, chattr

T1003.008 OS Credential Dumping: /etc/passwd and
/etc/shadow

passwd, shadow

T1070.003 Indicator Removal: Clear Command History .bash_history, HISTFILE, HISTFILESIZE

Session Labeling (Some Examples)

11

Supervised Approach Results
Evaluation Results of Supervised Models

Class Number of
Unique
Suspicious
Keywords

Number of
Samples

Training
Set
(90%)

Testing
Set (10%)

Normal = 0 790,363 711,327 79,036
Abnormal >= 3 28,413 25,571 2,842
Abstaine
d
(no label)

In between 335,322 - -

Total - 1,154,098 736,898 81,878

12

Model Logistic Regression Fine-tuned DistilBERT Fine-tuned DistilBERT with
SetFit

Number of
Samples per
Class

Precisio
n

Recall F1 Score Precisio
n

Recall F1 Score Precisio
n

Recall F1 Score

16 0.1464 0.7860 0.2454 0.1632 0.5578 0.2513 0.1569 0.8287 0.2622
32 0.1625 0.8248 0.2711 0.1995 0.6977 0.3036 0.2059 0.8930 0.3331
64 0.1713 0.8754 0.2862 0.1625 0.8418 0.2716 0.2712 0.9484 0.4210
128 0.1922 0.8849 0.3155 0.1703 0.9098 0.2864 0.3909 0.9758 0.5563
256 0.2070 0.8890 0.3356 0.3230 0.9663 0.4840 0.4819 0.9850 0.6459
512 0.2308 0.9027 0.3676 0.4900 0.9774 0.6524 0.5845 0.9866 0.7337
1024 0.2631 0.9188 0.4090 0.6483 0.9854 0.7819 0.7134 0.9900 0.8290
2048 0.2944 0.9267 0.4467 0.7534 0.9899 0.8555 0.7934 0.9894 0.8802

Supervised Approach Results
Evaluation Results of Supervised Models

13

Supervised Approach Results
Session Numbers of MITRE ATT&CK® Tactics and Techniques

14

Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Remote command execution of transient web server with potential for data exfiltration.
Details: Line 2: launch transient web server on remote host.
Line 3: terminate the server.
Line 4 and 6: MITRE ATT&CK tags inserted by processing pipeline.
Line 5: transfer data from web server using wget.
Activity id = *1e1BD9. Anomaly score = 1.8919. Suspicious keywords = [kill: 3, wget: 21]
1
2

3

4
5
6
7

<lines removed>
salt "WH" cmd.run "python -m SimpleHTTPServer # --directory /sqldata/ms_backups/"
bg=trues/WH_test_db_FU
salt "WH" cmd.run "ps aux | grep '[S]impleHTTPServer #' | awk '{print $#}' |xargs kill –9
"/WH_test_db_FUWH:
-> [T1057: Process Discovery, T1489: Service Stop]
salt "WH" cmd.run "cd /sqldata/dbmigration;wget http://<host:port>//sqldata/ms_backups/WH_test_db_FU
-> [T1105: Ingress Tool Transfer]
<lines removed>

15

Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Potential data exfiltration and credential exposure subject to discovery via process discovery.
Activity id = *1c01C8. Anomaly score = 1.9754. Suspicious keywords = [curl: 12]
1
2
3
4

<lines removed>
curl -T server_support.tar.gz -u<username>:<plaintext_credentials> <externalhost> /dropzone/uploads
-> [T1105: Ingress Tool Transfer]
<lines removed>

16

Session Annotation Examples
Sessions Annotated with Suspicious Keywords and Techniques

Example: Disk clear and boot load configuration changes.
Details: Lines 1, 7, 10 omitted for brevity. Line 3 and 5 are automatic annotations added by pipeline.
Line 2: remote command to check system details. Line 4: remote command to clear disk prior to install.
Line 6: restart Hadoop monitoring agent. Line 8, 9: modify boot loader.
Activity id = *b41A0E. Anomaly score = 3.1271. Suspicious keywords = [chmod: 2, df: 1, wget: 1]
1
2
3
4
5

6
7
8
9

10

< lines removed >
ansible all -i <INVENTORY> -m shell -a "uptime;grep Start /etc/INSTALL_CLASS;cat /etc/redhat-release" -o
-> [T1082: System Information Discovery]
ansible all -i <INVENTORY> -m shell -a "cd /root;chmod HFF diskwipe.sh;./diskwipe.sh" -b
-> [T1222.002: File and Directory Permissions Modification - Linux and Mac File and Directory Permissions
Mod]
ansible all -i <INVENTORY> -m shell -a "/sbin/service ambari-agent restart" -become -b
<lines removed>
ansible all -i <INVENTORY> -m shell -a "cd /boot/grub#;cp -p grub.cfg grub.cfg.bkp" -b
ansible all -i <INVENTORY> -m shell -a "/sbin/grubby --args=transparent_hugepage=never --update-
kernel=ALL " -b
<lines removed>

17

Conclusions

• Detection of anomalies for interactive command shells is needed as a cybersecurity safeguard because
privileged access at the shell level provides the opportunity for a range of attacks that threaten critical enterprise
infrastructure, data, and services.

• We present the first published results on keystroke anomaly detection using an enterprise-scale dataset
captured from production systems over a 90-day period with 1.15 million sessions and over 15 thousand users.

• We presented the first experimental results of using the transformer model, specifically DistilBERT, for
keystroke log anomaly detection of Unix shells, in both unsupervised and supervised approaches.

• We tagged each session using two existing schemes, the MITRE ATT&CK® techniques and suspicious
keywords, where Unix shell sessions with high anomaly scores were then cross-checked with the tags as part of
validating the utility of the anomaly model for operations uses.

Research Summary

Thanks for Listening!

18

