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• Understanding burning plasma dynamics in ITER is essential for 

advancing controlled thermonuclear fusion.

• Accurately modeling multi-region, multi-timescale energy 

transfer is key to predicting plasma thermal stability.

• NeuralPlasmaODE leverages machine learning to enhance 

burning plasma simulations.
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• NeuralPlasmaODE successfully models ITER plasma transport 

using Neural ODEs and transfer learning from DIII-D data.

• The model accurately captures multi-region, multi-timescale 

energy transfer, providing insights into plasma thermal dynamics.

• Simulations for various scenarios confirm the role of radiation 

and transport processes in regulating plasma energy balance.

Burning Plasma Dynamics Model

Parametric Diffusivity Model

Computational Framework

ITER Simulation Results

• Geometry: The tokamak plasma is divided into core, edge, 

scrape-off layer (SOL), and divertor regions, each treated as a 

separate node.

• NeuralPlasmaODE uses a data-driven approach to optimize 

diffusivity parameters:
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• Parameters optimized from DIII-D experimental data are 

transferred to ITER simulations and fine-tuned.

• Inductive Scenario: Core electrons lose energy through radiation 

and energy transport processes, leading to stable plasma 

conditions without uncontrolled temperature rise.

• Hybrid Scenario: Increased auxiliary heating and fusion heating 

raise core temperatures, but enhanced transport and radiation 

losses balance energy outflow, preventing power excursions.

• Non-Inductive Scenario: Higher core temperatures and steeper 

temperature gradients drive strong energy transport to the 

edge, maintaining equilibrium without instability.

• Particle Balance: Tracks densities influenced by external sources, 

fusion reactions, particle transport, and ion orbit loss (IOL).
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• Energy Balance: Captures energy transfer from fusion power, 

auxiliary heating, transport mechanisms, and radiation losses.
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Conclusion

• Optimized diffusivity parameters reduce mean squared error 

(MSE) by over 98% compared to the empirical model, 

demonstrating significant improvement.

• The model accurately predicts core and edge densities and 

temperatures, demonstrating better agreement with DIII-D 

experimental data.

• The model generalizes well across test shots, confirming its 

reliability for modeling diverse plasma conditions.
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• NeuralPlasmaODE combines Neural ODEs with the burning 

plasma dynamics model to enhance predictive accuracy.


	Slide 1

