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Abstract

We present CyberBench and CyberInstruct, two innovative
tools designed to enhance the application of large language
models (LLMs) in the cybersecurity field. Firstly, Cyber-
Bench is a domain-specific multi-task benchmark tailored for
assessing LLM performance in cybersecurity-related tasks.
As the first benchmark suite for LLMs in cybersecurity, Cy-
berBench fills a crucial gap in the current practice by provid-
ing a general and consistent approach and addressing cover-
age limitations of prior language model evaluations in this do-
main. We showcase the results of using CyberBench to evalu-
ate more than ten generative LLMs. Secondly, CyberInstruct
is a family of generative LLMs produced through instruction-
tuning from open LLMs with a cybersecurity corpus. Exper-
imental results of CyberInstruct exhibit comparable perfor-
mance to large proprietary LLMs in the cybersecurity do-
main, underscoring the effectiveness of our fine-tuning strat-
egy. Our work contributes to the understanding of LLMs’ po-
tential in cybersecurity and establishes a solid foundation for
future research and development.

1 Introduction
In the rapidly evolving digital landscape, cybersecurity has
emerged as a critical concern for individuals, businesses,
and governments. Over the next decade, the importance of
cybersecurity is expected to grow exponentially as increas-
ing numbers of devices, systems, and infrastructures become
interconnected. However, cybersecurity is a complex do-
main. From an application perspective, cybersecurity prac-
tice ranges from physical layer security to application layer
security. Deep system knowledge of operating systems, net-
work protocols, infrastructure, and their associated attack
surface and defense components is needed. From a termi-
nology perspective, Wikipedia1 uses over one thousand re-
lated categories and pages to tag its cybersecurity related
articles, and National Institute of Standards and Technol-
ogy’s (NIST) computer security glossary2 contains around
ten thousand terms and definitions. From a corpus perspec-
tive, system logs, network flows, malware, software vulner-
abilities, and threat models are examples of the specialized

*These authors contributed equally.
1https://en.wikipedia.org/wiki/Category:Computer security
2https://csrc.nist.gov/glossary

contents that distinguish cyber intelligent system develop-
ment from other domains.

Recently large language models (LLMs) have trans-
formed the landscape of natural language processing (NLP)
and artificial intelligence (AI) by demonstrating unprece-
dented capabilities in a wide range of tasks (OpenAI 2023).
LLMs have the potential to enable and assist cybersecurity
work including cyber intelligence, incident analysis, vul-
nerability assessment, threat modeling, computer forensics,
and control management. However, the application of LLMs
in cybersecurity, a field characterized by domain-specific
jargons, evolving threats, and complex operating environ-
ments, remains underexplored. To unlock the full potential
of LLMs in cybersecurity, there is an urgent need for both
a consistent and uniform approach assessing LLMs and a
fine-tuning strategy catering to this specialized domain.

In this paper, we present CyberBench and CyberInstruct,
two innovative tools designed to address the challenges of
applying LLMs in the field of cybersecurity. CyberBench is
a multi-task benchmark that assesses LLMs’ performance
for NLP jobs related to cybersecurity, offering valuable in-
sights into their strengths and weaknesses. By systemat-
ically evaluating various mainstream LLMs, CyberBench
contributes to identifying areas for improvement and fos-
ters the development of more effective models for cyber-
security applications. CyberInstruct, on the other hand, is
a family of fine-tuned generative LLMs based on state-
of-art open LLMs, where a training corpus from Cyber-
Bench is leveraged for creating specialized models with en-
hanced capabilities in the cybersecurity domain. By employ-
ing instruction-tuning, CyberInstruct achieves comparable
results with GPT-4 and outperforms open LLM baselines
in various cybersecurity tasks, as shown in the Figure 1,
demonstrating the effectiveness of our fine-tuning approach.

The main contributions of this paper are as follows:
• Development and presentation of CyberBench, a first-

published multi-task benchmarking framework for as-
sessing the performance of generative LLMs in
cybersecurity-related tasks, with collection and prepro-
cessing of diverse and representative datasets from vari-
ous cybersecurity sources.

• Evaluation of leading LLMs using CyberBench with ap-
propriate evaluation metrics, providing insights into their
capabilities and limitations in the cybersecurity context
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Figure 1: Evaluation results of baselines (Llama-2-7B, Llama-2-13B, GPT-35-Turbo, and GPT-4) and fine-tuned models
(CyberInstruct-7B and CyberInstruct-13B) with 10 tasks from CyberBench, where the all-mpnet-base-v2 embedding
model is used for retrieving five-shot similar examples besides the summarization task with the zero-shot setting. CyNER and
APTNER are named entity recognition (NER) tasks, CyNews is a summarization task, SecMMLU and CyQuiz are multiple-
choice tasks, and the rest of datasets are text classification tasks. The F1, ROUGE, and accuracy (Acc.) scores are used as
evaluation metrics for different tasks.

for named-entity recognition, summarization, multiple
choice, and text classification tasks.

• Development of a specialized LLM fine-tuned for cy-
bersecurity tasks, CyberInstruct, and demonstration of
the effectiveness of instruction-tuning with parameter-
efficient fine-tuning (PEFT), including quantization and
low-rank adaptation, in improving LLMs’ performance
in the cybersecurity domain.

The paper is organized as follows: Section 2 reviews re-
lated work about benchmarks and language models. Section
3 presents the design and development of CyberBench. Sec-
tion 4 introduces foundation model and fine-tuning method-
ology of CyberInstruct. Section 5 describes the experimental
setup and results. Finally, Section 6 concludes the paper.

2 Related Work
The application of pretrained language models (PLMs) in-
cluding large language models (LLMs) in specialized do-
mains has been an active area of research in recent years.
Many studies (Ling et al. 2023) have explored the effective-
ness of these models in various fields. In this section, we
briefly review related work in the context of benchmarking
PLMs and domain-specific models in cybersecurity.

2.1 Language Model Benchmarks
Numerous benchmarks have been developed to assess the
performance of general-purpose and domain-specific lan-
guage models across a wide range of natural language pro-
cessing (NLP) tasks. Some of the most notable benchmarks

for general language models are GLUE (General Language
Understanding Evaluation) (Wang et al. 2018), SuperGLUE
(Wang et al. 2019), GLGE (General Language Generation
Evaluation) (Liu et al. 2021), MMLU (Measuring Mas-
sive Multitask Language Understanding) (Hendrycks et al.
2020), and HELM (Holistic Evaluation of Language Mod-
els) (Liang et al. 2022). Also, in the privacy domain, there
are PLUE (Privacy Policy Language Understanding Evalu-
ation) (Chi et al. 2023) and PrivacyGLUE (Shankar et al.
2023). While these benchmarks have been instrumental in
evaluating general-purpose and privacy-specific language
models, they do not address the unique challenges and re-
quirements of the cybersecurity domain. Scattered down-
stream NLP tasks have been used for evaluating language
models in the cybersecurity domain, such as sentiment anal-
ysis and named-entity recognition (NER) for SecureBERT
(Aghaei et al. 2022), NER and text classification for Cy-
BERT (Ranade et al. 2021), clustering, word similarity,
NER, text classification, and SuperGLUE for CySecBERT
(Bayer et al. 2022), and multiple-choice questions in SecQA
(Liu 2023). However, there is no systematical way to evalu-
ate all cybersecurity language models, especially generative
LLMs. Although there are some related works in progress
such as Skyhawk Security3 and Sophos AI4, the lack of a

3https://skyhawk.security/new-horizons-in-cloud-security-
part-1/, https://skyhawk.security/new-horizons-in-cloud-security-
part2/

4https://news.sophos.com/en-us/2023/10/18/sophos-ai-team-
to-present-at-camlis/
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published benchmark tailored for language models in cyber-
security has left a gap in the evaluation and comparison of
models designed for this domain.

CyberBench aims to fill this gap by providing a multi-
task evaluation platform focused on cybersecurity. Instead
of a comprehensive counterpart to HELM and other gen-
eral benchmarks, CyberBench concentrates on NLP tasks re-
lated to this specific domain. It allows researchers and prac-
titioners to assess the performance of language models on
a range of cybersecurity tasks, facilitating the development
and fine-tuning of models that can effectively address the
challenges faced in this field. By creating a cybersecurity-
specific benchmark, the research community can foster more
targeted advancements in language understanding and gen-
eration for cybersecurity applications.

2.2 Domain-Specific Language Models

In the past few years, many language models have been
developed or adapted for specific domains to address the
unique challenges faced in those areas. In the context of cy-
bersecurity, previous language models often focus on sin-
gle or highly related tasks such as detecting anomalous logs
(Guo, Yuan, and Wu 2021; Le and Zhang 2021; Ott et al.
2021; Liu and Buford 2023) and malicious code (Rahali and
Akhloufi 2021, 2023), identifying vulnerabilities (Das et al.
2021), automating incident response (Shahid and Debar
2021; Ameri et al. 2021), and generating human-readable
summaries of security events (Meng et al. 2023), while some
previous works (Aghaei et al. 2022; Ranade et al. 2021;
Bayer et al. 2022) pretrained or fine-tuned language models
for border cybersecurity tasks. Some examples are Secure-
BERT (Aghaei et al. 2022), CyBERT (Ranade et al. 2021),
CySecBERT (Bayer et al. 2022), MalBERT (Rahali and
Akhloufi 2021), ThreatCrawl (Kuehn, Schmidt, and Reuter
2023), and V2W-BERT (Das et al. 2021).

Despite significant advances in cybersecurity NLP re-
search using BERT-based models, there is still a need for
a more versatile and user-guided solution. Those previous
models are either proposed for one specific application or
needed fine-tuning for a single task, which limit their usage
for handling multiple cybersecurity tasks simultaneously
and switching tasks based on user instructions. CyberIn-
struct addresses this need as a generative model designed for
multi-task performance in the cybersecurity domain. Unlike
previous work, CyberInstruct leverages instruction tuning,
allowing it to follow user instructions and adapt to a wide
range of cybersecurity tasks. This added versatility empow-
ers users to obtain tailored results and insights, making Cy-
berInstruct a valuable asset in addressing the growing chal-
lenges and complexities of the cybersecurity landscape.

In conclusion, the related work discussed in this section
highlights the ongoing research efforts in the development
and application of LLMs and benchmarks. CyberBench and
CyberInstruct contribute to these research areas by offering
tools and methodologies specifically designed for the cyber-
security domain, paving the way for future advancements
and applications of LLMs in this critical field.

3 CyberBench
In this section, we propose a benchmark for evaluating large
language models (LLMs) within the cybersecurity domain.
We first discuss the main principles guiding the benchmark’s
design and then present tasks and datasets included. We also
introduce instructions, prompts, and evaluation metrics.

3.1 Design Principles
CyberBench is a multi-task cybersecurity benchmark de-
signed to evaluate the performance and effectiveness of large
language models (LLMs) for cybersecurity-related tasks in
English. In designing such benchmark for evaluating LLMs
in the cybersecurity domain, several key principles are taken
into consideration. Primarily, the benchmark should include
diverse and representative tasks that can capture the com-
plexity and nuances of the cybersecurity domain. This en-
sures that the evaluated models can handle various types of
tasks relevant to the cybersecurity. Furthermore, the chosen
tasks should ideally be based on widely accepted standards
and datasets, allowing for reliable comparisons between dif-
ferent models and fostering research reproducibility.

With these principles in mind, ten datasets from four tasks
are selected for the benchmark: named-entity recognition
(NER), summarization (SUM), multiple choice (MC), and
text classification (TC). Named-entity recognition is cru-
cial in the cybersecurity domain as it enables the extrac-
tion of key information such as threat actors, vulnerabilities,
and attack methods from unstructured text data. Summariza-
tion helps cybersecurity professionals in condensing lengthy
cybersecurity reports or articles into concise and relevant
information, allowing quicker and more efficient decision-
making by security analysts. Multiple choice tasks test the
model’s ability to reason and draw logical conclusions from
given information, a vital skill when dealing with complex
cybersecurity incidents. Lastly, text classification is essen-
tial for organizing and categorizing the vast amounts of tex-
tual data generated in the cybersecurity domain, which in
turn, facilitates efficient information retrieval and analysis.
By incorporating these four kinds of tasks and correspond-
ing datasets, CyberBench is created as a multi-task frame-
work for evaluating the performance of LLMs in the context
of cybersecurity.

3.2 Tasks and Datasets
A brief summary of CyberBench is presented in the Table 1.
Examples from these datasets are shown in the Appendix A.
The method for downloading the datasets is described in the
Appendix B. These tasks and datasets are introduced in the
following paragraphs.

Named-Entity Recognition The named-entity recogni-
tion (NER) is to recognize the entities from a list of given
entity types. This task is crucial for cybersecurity, which al-
lows the automatic identification and classification of cyber
entities, such as exploits, security organization, vulnerabil-
ity indicators, and so on from unstructured texts. NER helps
professionals analyze textual data to detect potential threats
and automate incident response, thereby strengthening cy-
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Dataset Data Train Val Test Input Output Metric
Named-Entity Recognition (NER)

CyNER 4,017 2,558 762 697 sentence entities micro F1
APTNER 9,971 6,923 1,669 1,379 sentence entities micro F1

Summarization (SUM)
CyNews 3,742 2,993 374 375 article headline ROUGE-1/2/L

Multiple Choice (MC)
SecMMLU 116 5 11 100 question and choices answer accuracy
CyQuiz 128 5 23 100 question and choices answer accuracy

Text Classification (TC)
MITRE 10,873 8,698 1,087 1,088 procedure description technique ID and name accuracy
CVE 14,652 11,721 1,465 1,466 CVE description severity accuracy
Web 11,429 9,143 1,143 1,143 URL phishing or legitimate binary F1
Email 13,281 10,624 1,328 1,329 email phishing or safe binary F1
HTTP 12,213 9,770 1,221 1,222 HTTP requests anomalous or normal binary F1

Table 1: Tasks and Datasets in the CyberBench with their whole data sizes, training (Train), validation (Val), and testing (Test)
data sizes, input and output text types, and evaluation metrics.

ber defense capabilities. In CyberBench, we consider two
datasets: CyNER and APTNER.

Cybersecurity NER (CyNER) (Alam et al. 2022) is the
dataset of an open-source python library for NER in the cy-
bersecurity domain. This dataset was manually extracted,
cleaned, and annotated with 5 entities: malware, indicator,
system, organization, and vulnerability . This dataset was al-
ready split into training, validation, and testing sets based on
documents. During preprocessing, we split paragraphs into
sentences and drop single-token sentences. We also fix tag
issues and drop duplicates during data cleaning. The BIO-
tags of the dataset have been transformed into a JSON for-
mat: ”entity type”: [”entity 1”, ”entity 2”, ...], which can be
handled conveniently by generative LLMs.

Advanced Persistent Threat NER (APTNER) (Wang
et al. 2022) provides a dataset for the NER in cyber threat
intelligence research. This dataset contains 21 entities, from
threat participants, security teams, to URLs, domains, and
hash values, and was manual annotated by trained students
and validated by professional people. The data was split
as 7:1.5:1.5 by authors. During our preprocessing, we split
paragraphs into sentences and drop single-token sentences
as CyNER. We also fix tag issues with heuristic rules and
drop duplicates. Similar to the CyNER, the output is format-
ted into a JSON text.

Summarization Text summarization (SUM) is the pro-
cess of condensing large pieces of text into shorter, coherent
summaries while preserving core information. In cybersecu-
rity, this technique enables analysts to efficiently extract key
points from extensive logs and reports, streamlining incident
response and threat detection. For CyberBench, one public
cybersecurity news dataset, CyNews, is selected.

Cybersecurity News Article Dataset (CyNews) (Ahmed
et al. 2021) contains cybersecurity news from the Hacker

News®. The original data classified the news articles into
several types of cyber threats. In our benchmark, we use its
news articles as the model input and headlines as the model
output to transform it into a summarization task.

Multiple Choice Multiple-choice (MC) question answer-
ing involves selecting the correct answer from a list of op-
tions based on a given context or query. In cybersecurity, this
task can evaluate the model knowledge about the domain,
which is useful for answering basic questions during profes-
sion daily uses and employee training. For CyberBench, we
decide two datasets: SecMMLU and CyQuiz.

MMLU Computer Security (SecMMLU) (Hendrycks
et al. 2020) is a subset of MMLU (Measuring Massive Mul-
titask Language Understanding) in the computer security do-
main. The original MMLU consists multiple-choice ques-
tions from various fields, and only the computer security do-
main is used in this research. This dataset does not have a
training set for the computer security questions, besides a
development set with 5 examples for the few-shot setting.
This would require that the model should already learn the
domain knowledge during the pre-training, rather than learn
that knowledge from the MMLU few-shot examples or the
training set.

Cybersecurity Skill Assessment5 (CyQuiz) is the cy-
bersecurity subset of the practice questions for professional
skill assessments. These practice questions can be used for
evaluating the candidates’ abilities of general knowledge
about the cybersecurity domain. In this benchmark, we only
keep the multiple-choice questions with 4 choices and single
correct answer. As the setting of MMLU, we keep 5 exam-
ples in the training set, 100 examples in the testing set, and
put other examples in the validation set.

5https://github.com/Ebazhanov/linkedin-skill-assessments-
quizzes
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Text Classification Text classification (TC) is the task of
assigning predefined categories or labels to a given text
based on its content. In cybersecurity, this technique is
widely used for many applications, such as phishing email
and website detection, log anomaly detection, threat analy-
sis, and malware classification, which can help analysts to
efficiently prioritize potential threats. Although many public
datasets available for this task in the cybersecurity domain,
we select five representative datasets from five different cy-
bersecurity areas: MITRE, CVE, Web, Email, and HTTP.

MITRE ATT&CK® Tagging6 (MITRE) is a dataset col-
lected from the MITRE ATT&CK® framework, which a
knowledge base for cyber adversarial actions. The sentence-
label pairs are extracted from procedure examples of each
technique in this framework, where the input is a description
of one procedure example, and the output is the technique ID
and name. The procedure here is a specific implementation
of a technique or sub-technique. During preprocessing, we
drop the sentences with multiple labels and techniques with
less than 10 examples.

CVE® and CWE™ Mapping Dataset7 (CVE) is a
dataset collected from National Vulnerability Archive
(NVD) for publicly disclosed software vulnerabilities. In
this research, the vulnerability description is used as the tex-
tual input and the severity level (critical, high, medium, and
low) are used as labels. Due to the large amount of data, we
only keep the CVEs from the year of 2021. We also drop
duplicates and long inputs with more than 2,000 characters.

Webpage Phishing Detection8 (Web) is a dataset with
URLs and extracted features for building and benchmark-
ing phishing detection systems. The features were extracted
from URLs and contents of webpages. This dataset is bal-
anced with half legitimate URLs and half phishing ones. In
CyberBench, we use only URLs without extra features for
the URL classification task.

Phishing Email Detection (Email) (Chakraborty 2023)
provides a dataset for detecting phishing emails with the
email texts. This dataset has 61% safe emails and 39%
phishing emails. During preprocessing, we drop long emails
with more than 2,000 characters.

HTTP Dataset CSIC 2010 (HTTP) (Giménez, Villegas,
and Marañón 2010) is dataset containing web requests au-
tomatically generated and targeted to an e-commerce web
application. This dataset was developed for evaluating web
attack protection systems. Each HTTP request can have mul-
tiple fields, including the method, user agent, cache control,
etc. The anomalous class includes three types of malicious
requests: static attack, dynamic attack, and unintentional il-
legal request. Due to the large amount of data, we use only
20% of original test sets from both normal and anomalous
classes for a balanced dataset.

6https://attack.mitre.org/
7https://www.kaggle.com/datasets/krooz0/cve-and-cwe-

mapping-dataset
8https://www.kaggle.com/datasets/shashwatwork/web-page-

phishing-detection-dataset

3.3 Instructions and Prompts
To evaluate large language models (LLMs) using Cyber-
Bench, it is essential to provide clear instructions for each
task. Instead of one human-crafted instruction for one
dataset, 10 distinct instructions are generated with GPT-4
for each dataset and randomly assigned to examples. This
design can increase the robustness of benchmark and avoid
introducing too much dependence on single instruction. For
named-entity recognition (NER) tasks, the instructions en-
compass entity types, entity definitions, and the desired out-
put format. In the case of text classification tasks, the in-
structions specify the input text type and output categories.
The Appendix A showcases examples of these instructions.
During the experiments, the instruction, input, and output
from each example are formatted into a single prompt as the
Alpaca (Taori et al. 2023) instruction tuning dataset.

To enhance model performance and encourage the gener-
ation of outputs in the specified format, we employ a few-
shot prompt approach with Retrieval-Augmented Genera-
tion (RAG) (Lewis et al. 2020), where examples are selected
from the training set by using an example selector (Chase
2022) based on similarity search. Inside the selector, exam-
ples are embedded into vectors using an embedding model,
and the similarity scores between the given test example and
the training examples are calculated. The examples with the
highest similarity scores are selected by utilizing the near-
est neighbor search in a vector store (Johnson, Douze, and
Jégou 2019). The five-shot setting is applied across all tasks,
except for summarization, where only the zero-shot setting
is applied due to the size limit of context window. The few-
shot prompt template is shown in the Appendix C.

3.4 Evaluation Metrics
Evaluating the performance of large language models
(LLMs) on the selected datasets necessitates the use of ap-
propriate evaluation metrics. We apply suitable evaluation
metrics for different task in the CyberBench and introduce
them as follows.

For the named-entity recognition (NER) task, entities can
be generated for all entity types. Therefore, micro-averaged
F1 scores are employed by counting all entity types. In the
case of the summarization task, the Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) (Lin 2004) scores,
including ROUGE-1, ROUGE-2, and ROUGE-L, are uti-
lized, where ROUGE-1 counts the overlap of unigrams be-
tween predictions and references, ROUGE-2 counts the bi-
grams, and ROUGE-L is computed based on the longest
common substring (LCS). For multiple choice tasks, the ac-
curacy serves as the metric. And for the text classification
tasks, accuracy is applied to multi-class tasks (more than
two classes), whereas the F1 score for the positive class
(e.g., phishing or anomalous) is used for binary classifica-
tion tasks. To compute the average score for the ten datasets,
a simple averaging method is employed. However, for sum-
marization tasks, the average of ROUGE-1, ROUGE-2, and
ROUGE-L scores is calculated first before deriving the over-
all average. This approach ensures a comprehensive evalua-
tion of LLM performance across a diverse range of tasks and
datasets.

5



Using CyberBench, we can evaluate the performance of
several leading LLMs on the defined cybersecurity tasks.
The results of these evaluations will be presented in the ex-
periment section. Before discussing experiment results, we
will introduce a family of fine-tuned LLMs for cybersecurity
and its methods in the next section.

4 CyberInstruct
CyberInstruct is a family of fine-tuned generative large lan-
guage models (LLMs) designed to address the unique chal-
lenges and requirements inherent to cybersecurity domain.
In this section, we introduce the foundation model, instruc-
tion tuning, and parameter-efficient fine-tuning (PEFT).

4.1 Foundation Model
Foundation models, also referred to as base models, rep-
resent a class of large machine learning models, charac-
terized by training on extensive datasets at scale and pos-
sessing the remarkable ability to adapt to a broad spectrum
of downstream tasks. In the field of natural language pro-
cessing (NLP), LLMs can be served as foundation mod-
els for applications in specific domains. Among numerous
open LLMs presented in the past few years, Llama-2 is a
recently introduced collection of pretrained and fine-tuned
large language models, specifically designed to cater to a
variety of use cases, with a particular focus on dialogue ap-
plications. Given the impressive performance and adaptabil-
ity of Llama-2, it serves as an excellent foundation model
for fine-tuning in the context of cybersecurity. By building
upon Llama-2’s optimized training and robust performance,
we can create a family of fine-tuned models, CyberInstruct,
which can effectively tackle the complex challenges of the
cybersecurity domain using NLP techniques.

4.2 Instruction Tuning
The fine-tuning process (Chung et al. 2022; Longpre et al.
2023) of CyberInstruct involves leveraging the training
datasets from CyberBench to create a specialized model
with enhanced capabilities in the cybersecurity domain. As
described in the benchmark section, the CyberBench dataset
encompasses a diverse range of cybersecurity data sources.
To outperform baseline LLMs, CyberInstruct employs a
technique known as instruction-tuning. This approach in-
volves incorporating explicit instructions into the model’s
input during the fine-tuning process, which guides the model
to generate more accurate and relevant outputs for cyber-
security tasks. This is particularly important for domain-
specific tasks, where the general knowledge of LLMs may
not be sufficient to achieve high performance. A key differ-
ence of instruction tuning used in this research from the tra-
ditional fine-tuning for pretrained language models such as
BERT is that we only fine-tune a single model for all tasks
in the CyberBench. There, CyberInstruct can handle multi-
tasks at the same time without the need for additional fine-
tuning or separate models for each task.

In preparation for the evaluation tasks, we format all
examples into instructions, inputs, and outputs, and com-
bine them into texts by using the Alpaca (Taori et al.

2023) prompt template. However, we only use the zero-shot
prompt template here without few-shot examples. For each
input paired with the instruction, the output is also included
in the text to teach the model how to handle the input prop-
erly.

4.3 Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) (Liu et al. 2022) is a
pivotal approach for tailoring large language models (LLMs)
to specialized tasks or domains with the goal of minimizing
the number of trainable parameters. This approach strikes
a balance between model performance and resource con-
sumption. In the development of CyberInstruct, we em-
ploy a method called QLoRA, Quantized Low-Rank Adap-
tation (Dettmers et al. 2023), where gradients backpropa-
gate through frozen 4-bit quantized pre-trained layers with
trainable low rank adapters (Hu et al. 2021) applied on top
of selected attention modules. By employing QLoRA for
fine-tuning the CyberInstruct, we aim to optimize the uti-
lization of the extensive knowledge encapsulated within the
pre-trained LLM, while tailoring it to the specific needs of
the cybersecurity domain. This method enables us to achieve
superior performance on the benchmark tasks while main-
taining efficient resource utilization. Consequently CyberIn-
struct emerges as a potential tool for tackling a broad spec-
trum of cybersecurity challenges.

5 Experiments
In this section, we introduce baselines and experiment setup
and then delineate the experiment results obtained from
evaluating large language models (LLMs) and CyberInstruct
using our benchmark suite CyberBench.

5.1 Baselines and Experiment Setup
In this study, we select a collection of pretrained language
models (PLMs) to evaluate their performance against our
cybersecurity benchmark, CyberBench. These baselines are
drawn from two prominent groups of models in the field of
natural language processing (NLP) and cybersecurity. The
first group consists of BERT-based models that have been
specifically pretrained for the cybersecurity domain, while
the second group encompasses various large language mod-
els (LLMs) that showcase a range of architectures and capa-
bilities.

The group of BERT-based models (Devlin et al.
2018) pretrained for cybersecurity includes SecBERT9, Se-
cRoBERTa10, SecureBERT (Aghaei et al. 2022), and Cy-
SecBERT (Bayer et al. 2022). These models are deriva-
tives of the original BERT and RoBERTa architectures and
have been pretrained or fine-tuned on cybersecurity-related
corpora to enhance their performances in domain-specific
tasks. The second set of baselines used in this study includes
generative LLMs: Falcon (Penedo et al. 2023; Almazrouei
et al. 2023), Vicuna (Zheng et al. 2023), Mistral (Jiang et al.
2023), Zephyr (Tunstall et al. 2023), Llama-2 (Touvron et al.

9https://huggingface.co/jackaduma/SecBERT
10https://huggingface.co/jackaduma/SecRoBERTa
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2023), GPT-3.5 (Ouyang et al. 2022), and GPT-4 (OpenAI
2023). These models represent various advancements in the
field of NLP and demonstrate the potential of LLMs in tack-
ling intricate language understanding and generation tasks.
In this work, we select open LLM variants with 7 billion and
13 billion parameters.

To evaluate the performance of LLMs using CyberBench
and validate the effectiveness of CyberInstruct, we con-
ducted a series of experiments. During experiments with
generative LLMs, the temperature is set to 0. To reduce the
text generation time and cost, we truncate the model re-
sponse at the end of the first output line, which is suitable
for all tasks in the CyberBench by design. Model responses
are then checked for matching the correct outputs, and eval-
uation metrics are subsequently calculated. The BERT-based
models are fined-tuned for each task. The foundation models
are also fine-tuned with the CyberBench corpus for produc-
ing CyberInstruct. More details about evaluation and fine-
tuning setup can be found in the Appendix D.

5.2 Experiment Results
In this part, we present evaluation results for both baselines
and fine-tuned models on CyberBench. More discussions
about the effects of embedding model, few-shot examples,
and quantization for model performances can be found in
the Appendix E.

Results of Baselines The experiment results for baselines
are show in the Table 2. Here we separate the BERT-based
models and the generative LLMs given the distinct opera-
tional characteristics of each. BERT-based models require
finetuning for each task, whereas generative LLMs can per-
form multiple tasks without the need for fine-tuning. The
all-mpnet-base-v2 embedding model (Reimers and
Gurevych 2019; Song et al. 2020) is used for retrieving few-
shot examples for LLMs. In terms of overall performance,
GPT-4 outperforms all other LLMs over this benchmark,
while GPT-3.5 follows closely, with Mistral-7B and Zephyr-
7B trailing behind.

For NER tasks, the BERT-based models outperform most
generative LLMs, while the GPT-4 can achieve compara-
ble performances with SecBERT and SecRoBERTa. For the
summarization task, GPT-4 and Vicuna-7B achieve the high-
est scores but are followed by GPT-3.5 and Vicuna-13B
approximately. For multiple-choice tasks, GPT-4 tops the
SecMMLU dataset, while GPT-3.5 excels in the CyQuiz
dataset. For the five text classification tasks, the BERT-based
models achieve better performances than generative LLMs.
Among the generative models, GPT-4 obtains the highest
scores for MITRE, Web, and HTTP datasets. Llama-2-7B
and Mistral-7B perform well in the CVE task, and Llama-
2-13B and Mistral-7B are the best models for the Email
dataset.

These evaluation results underscore the robust perfor-
mances of GPT-4 in cybersecurity tasks. However, due to the
proprietary nature of OpenAI models, it is expensive to call
OpenAI APIs and impose many limitations about using sen-
sitive or confidential data, which are common scenarios in
the cybersecurity domain. These constraints provide spaces

for fine-tuning open LLMs in the cybersecurity domain.

Results of Fine-Tuned Models To demonstrate the effec-
tiveness of our fine-tuning strategy, we evaluate the per-
formance of CyberInstruct-7B and CyberInstruct-13B, both
fine-tuned with QLoRA, on the cybersecurity tasks defined
in the CyberBench. We compare these results with the foun-
dation models and the previously best performing baselines,
GPT-3.5 and GPT-4. The evaluation results are presented in
the Table 2 and Figure 1.

Two training datasets are used during the fine-tuning
Llama-2. The first is the training set of CyberBench, and the
second is a subset of training data from MMLU (Hendrycks
et al. 2020). Given the scarcity of training data for multiple-
choice questions in the cybersecurity domain, we lever-
age science questions of elementary and middle difficulties
from MMLU to enhance CyberInstruct performance in the
multiple-choice tasks, SecMMLU and CyQuiz.

The results show that CyberInstruct-13B, fine-tuned
Llama-2-13B with both CyberBench training set and the
MMLU science questions, achieves the best overall eval-
uation result. The fine-tuned Llama-2-13B with only the
CyberBench training set demonstrates the comparable per-
formance to GPT-4. Those fine-tuned models show their
strengths in text classification and summarization tasks
within the cybersecurity domain. However, even with train-
ing data of multiple-choice questions from science domain,
CyberInstruct-13B is still inferior to GPT models. In the
NER tasks, fine-tuned Llama-2-13B models have compara-
ble performance with GPT-4.

In summary, CyberInstruct presents a promising approach
for adapting LLMs to the cybersecurity domain. By integrat-
ing instruction-tuning with parameter-efficient fine-tuning, it
creates a specialized model with superior performance in cy-
bersecurity tasks. The development of CyberInstruct paves
the way for future research and the application of LLMs in
the cybersecurity field, enabling researchers and practition-
ers to better tackle the complex challenges of this critical
domain.

6 Conclusion
In this research, we present CyberBench and CyberIn-
struct, two innovative tools designed to tackle the chal-
lenges of applying large language models (LLMs) in the cy-
bersecurity domain. CyberBench, a multi-task benchmark,
systematically evaluates the performance of LLMs across
cybersecurity-related tasks, including named entity recogni-
tion, summarization, multiple choice, and text classification,
providing valuable insights into their strengths and weak-
nesses in this specialized domain. The development of Cy-
berBench contributes to the identification of areas for im-
provement and fosters the advancement of more effective
models for cybersecurity applications.

CyberInstruct, a family of fine-tuned generative LLMs,
leverages the training sets from CyberBench to create
a specialized model with enhanced capabilities in the
cybersecurity domain. By employing instruction-tuning
with parameter-efficient fine-tuning (PEFT), CyberInstruct
achieves superior and comparable performance to baseline
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Model Average CyNER APTNER CyNews SecMMLU CyQuiz MITRE CVE Web Email HTTP

- - F1 F1 R-1/2/L Acc. Acc. Acc. Acc. F1 F1 F1

BERT-based models

SecBERT - 49.8 53.2 - - - 80.2 74.6 94.9 98.0 87.6
SecRoBERTa - 50.5 51.7 - - - 81.9 72.4 94.4 97.3 90.0
SecureBERT - 72.5 61.1 - - - 84.6 75.7 96.4 98.5 92.0
CySecBERT - 69.4 57.1 - - - 85.0 76.7 96.0 99.2 92.5

Generative LLMs – 7B

Falcon-7B 39.4 24.1 17.7 1.0/0.8/1.0 27.0 27.0 34.9 54.6 68.9 93.3 45.2
Falcon-7B-Instruct 37.5 20.4 19.1 7.2/2.7/6.0 25.0 21.0 30.4 52.9 59.5 93.5 48.3
Vicuna-7B-v1.5 53.0 25.8 27.5 36.1/15.9/31.2 64.0 66.0 43.5 60.0 75.3 86.4 53.7
Mistral-7B-v0.1 58.1 36.7 33.0 3.4/1.7/3.0 76.0 77.0 50.2 64.6 91.9 96.4 52.6
Mistral-7B 55.0 32.3 26.2 28.7/11.8/24.5 72.0 69.0 47.3 58.7 87.2 88.9 47.2
-Instruct-v0.1
Zephyr-7B-beta 57.7 30.0 30.5 32.0/12.8/27.4 74.0 75.0 43.5 61.9 85.2 86.7 66.2
Llama-2-7B 50.6 26.3 28.0 0.3/0.3/0.3 63.0 62.0 44.6 64.7 79.9 94.2 42.8
Llama-2-7B-Chat 44.6 22.7 25.4 25.2/9.6/21.6 60.0 56.0 41.6 52.5 48.4 79.4 41.0

Generative LLMs – 13B

Vicuna-13B-v1.5 57.3 26.2 28.1 35.6/15.6/30.9 66.0 74.0 47.3 62.3 82.6 86.5 72.3
Llama-2-13B 54.1 28.6 29.9 0.6/0.5/0.6 67.0 67.0 47.5 62.1 89.3 96.4 52.5
Llama-2-13B-Chat 45.0 27.5 28.2 3.5/1.3/2.9 64.0 65.0 42.7 42.0 58.8 70.3 48.5

GPTs

GPT-35-Turbo 62.6 33.4 40.9 35.5/15.4/30.3 78.0 83.0 54.5 58.0 89.2 78.9 83.1
GPT-4 69.6 55.4 50.0 35.9/15.5/31.2 83.0 81.0 64.9 63.0 95.4 93.9 84.1

Fine-tuned models with CyberBench training data

Llama-2-7B 60.2 39.1 46.1 44.6/25.5/41.1 44.0 45.0 62.6 72.3 94.4 97.7 64.1
Llama-2-13B 69.9 53.3 53.3 47.4/27.2/43.2 71.0 62.0 70.9 72.8 96.2 98.5 82.1

Fine-tuned models with CyberBench training data and MMLU science questions (CyberInstruct)

Llama-2-7B 63.5 43.9 49.5 44.0/25.2/40.5 53.0 57.0 63.8 72.0 94.8 97.9 66.6
Llama-2-13B 70.4 51.7 53.4 47.3/27.5/43.3 69.0 72.0 68.3 72.6 95.3 98.6 83.7

Table 2: Evaluation results for baselines and fine-tuned models on CyberBench, where the all-mpnet-base-v2 embedding
model is used for retrieving five-shot similar examples for LLMs besides the summarization task. The baselines are split into
three groups based on the model architecture and number of parameters. Two kinds of training data are used, one from the
CyberBench training set, and another from the MMLU training data of elementary and middle science questions. In evaluation
metrics, “R” is the ROUGE score, and “Acc.” is the accuracy.

LLMs across various cybersecurity tasks. This demonstrates
the effectiveness of our fine-tuning approach and highlights
the importance of domain-specific knowledge in achieving
high performance in specialized tasks.

The development of CyberBench and CyberInstruct paves
the way for future research and the application of LLMs
in the cybersecurity field, enabling researchers and prac-
titioners to better address the complex challenges of this
critical domain. While CyberInstruct demonstrates promis-
ing results, it is essential to acknowledge its limitations and
identify potential future research directions, such as improv-
ing model interpretability, ensuring data diversity and repre-
sentation, addressing ethical considerations, and enhancing
model robustness and generalizability.

In conclusion, the development of CyberBench and Cy-
berInstruct marks critical progress towards the effective ap-
plication of LLMs in the cybersecurity domain. By address-

ing the unique challenges and requirements of this field,
these tools contribute to the ongoing research in adapting
LLMs for specialized domains and pave the way for future
advancements in the field of cybersecurity.
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A CyberBench Examples
Examples of instructions, inputs, and outputs from the
datasets in CyberBench are shown in the Table 3.

B CyberBench Datasets
The datasets in the CyberBench can be downloaded into a
data folder with the following subfolders and files:

• ner (named-entity recognition)

– cyner: train.txt, valid.txt, and test.txt
from CyNER (https://github.com/aiforsec/CyNER)
dataset/mitre

– aptner: APTNERtrain.txt, APTNERdev.txt,
and APTNERtest.txt from APTNER
(https://github.com/wangxuren/APTNER)

• sum (summarization):

– cynews: TheHackerNews Dataset.csv
from Cybersecurity-News-Article-Dataset
(https://github.com/cypher-07/Cybersecurity-News-
Article-Dataset) (saved to CSV)

• mc (multiple-choice):

– secmmlu: computer security dev.csv,
computer security val.csv,
computer security test.csv,
science elementary.csv, and
science middle.csv from MMLU
(https://huggingface.co/datasets/cais/mmlu)
data.tar

– cyquiz: cybersecurity-quiz.md from Skill-
Assessments (https://github.com/Ebazhanov/linkedin-
skill-assessments-quizzes) cybersecurity

• tc (text classification):

– mitre: enterprise-attack.json from
MITRE-CTI (https://github.com/mitre/cti)
enterprise-attack (v13.1)

– cve: Global Dataset.csv from
CVE-and-CWE-Mapping-Dataset
(https://www.kaggle.com/datasets/krooz0/cve-and-
cwe-mapping-dataset) (saved to CSV)

– web: dataset phishing.csv from
Webpage-Phishing-Detection-Dataset
(https://www.kaggle.com/datasets/shashwatwork/web-
page-phishing-detection-dataset)

– email: Phishing Email.csv
from Phishing-Email-Detection
(https://www.kaggle.com/datasets/subhajournal/
phishingemails)

– http: normalTrafficTraining.txt,
normalTrafficTest.txt, and
anomalousTrafficTest.txt
from HTTP-Dataset-CSIC-2010
(https://www.tic.itefi.csic.es/dataset/)

C Few-Shot Prompt Template
The few-shot prompt template based on Alpaca (Taori et al.
2023) is shown below, where inputs and outputs are from
few-shot examples, and [...] represents the omitted text:

Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

### Instruction:
{instruction}

### Input:
{example_input_1}

### Response:
{example_output_1}

[...]

### Input:
{example_input_n}

### Response:
{example_output_n}

### Input:
{input}

### Response:

D Experiment Setup Details
In addition to the general setting for generative LLMs, spe-
cific settings are applied for each task. For NER, we elim-
inate duplicated entities within each entity type, and check
for matched entities in that type. The matched entities from
all entity types are accumulated for computing the micro F1
score. For multiple-choice and text classification tasks, we
check if the generated output can exactly match the true out-
put, although the fuzzy matching can be implemented in fu-
ture research.

The BERT-based models cannot directly generate re-
sponses for prompts due to the transformer encoder struc-
ture. Therefore, a task-specific header (neural network) is
required for each task, and the whole model with additional
layers needs fine-tuning. The BERT-based models are fined-
tuned for each task with a batch size of 16, a learning rate of
5e-5, a linear learning rate scheduler, a warmup ratio of 0.02,
and a weight decay of 0.01 with the AdamW (Loshchilov
and Hutter 2018) optimizer. The NER task is treated as to-
ken classification with fine-tuning over 5 epochs, and the
text classification task is treated as sequence classification
with fine-tuning over 10 epochs. Due to the limitations of
model structure as a transformer encoder and lack of training
data of cyber multiple-choice questions, we do not evaluate
the BERT-based models for the summarization and multiple-
choice tasks.
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During fine-tuning of CyberInstruct, the foundation
model is transformed into 4-bit quantization, and the LoRA
layers are added to four matrices (query, key, value, and out-
put) in each attention module. A batch size of 16, a learning
rate of 5e-5, a linear learning rate scheduler, a warmup ratio
of 0.02, and a weight decay of 0.00 are used with the paged
AdamW 8-bit optimizer.

E More Experiments and Analyses
E.1 Analysis of Embedding Models
To understand the impact of embedding models, we compare
the GPT-3.5 and GPT-4 performances with two embedding
models, text-embedding-ada-002-2 (Brown et al.
2020) from OpenAI and all-mpnet-base-v2 (Reimers
and Gurevych 2019; Song et al. 2020) from Hugging Face.
The results presented in the Table 4 indicate that the over-
all performance of each model is relatively consistent across
the two embedding models besides few variances probably
due to OpenAI API calls. For the convenience of experi-
menting, we only evaluate the remaining LLMs with the
all-mpnet-base-v2 embedding model in this research.

E.2 Analysis of Few-Shot Examples
To analyze the impact of few-shot examples on CyberBench,
we compare the performances of Llama-2-7B and Llama-2-
7B-Chat with one and five shots for retrieving similar or ran-
dom examples. These results are presented in the Table 5. It
is important to note that we only employed zero-shot setting
for the summarization task. We refrained from using zero-
shot setting for other tasks due to the free-format nature of
the output without illustrative examples for the LLMs, which
makes output parsing and evaluating challenging. The LLMs
that utilized five examples from similarity search achieve
the highest average scores, underscoring the effectiveness of
Retrieval-Augmented Generation (RAG) (Lewis et al. 2020)
in the cybersecurity domain. This is particularly evident in
NER and text classification tasks, where similar examples
can provide valuable contexts beyond the given instructions.
For the remainder of our experiments, we only use the five-
shot prompt with examples from similarity search.

E.3 Analysis of Quantization Precisions
To analyze the impact of quantization, we select two open-
source LLMs, Llama-2-7B and Llama-2-7B-Chat, and con-
duct CyberBench evaluation tasks under 4-bit and 8-bit
quantization settings. The evaluation results, presented in
Table 6 do not show significant differences overall between
these quantization precisions, although some variances are
observed in specific tasks. These results confirm the bene-
fits of employing quantization to limit computational costs
while keeping the result accuracy.
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Dataset Instruction Input Output

Named-Entity Recognition (NER)

CyNER Within the provided sentence, find entities that
correspond to these cybersecurity domain entity
types: Malware, System, Organization, Indica-
tor, Vulnerability. To assist you, here are the def-
initions of the entities: [. . . ] Extract and arrange
the entities in a JSON object according to this
format: ”entity type”: [”entity 1”, ”entity 2”, ...].
Do not include entities that are not part of the
sentence.

Super Mario Run Malware #2 – DroidJack RAT
Gamers love Mario and Pokemon, but so do
malware authors.

”Malware”: [”Super
Mario Run Malware”,
”DroidJack RAT”],
”System”: [”Mario”,
”Pokemon”]

APTNER Within the provided sentence, find entities that
correspond to these cybersecurity domain entity
types: APT, SECTEAM, IDTY, OS, EMAIL,
[. . . ]

From April 19-24, 2017, a politically-
motivated, targeted campaign was carried
out against numerous Israeli organizations.

”TIME”: [”April 19-
24, 2017”], ”LOC”:
[”Israeli”]

Summarization (SUM)

CyNews What would be a fitting headline for this text
discussing recent advancements or incidents in
cybersecurity?

Cloud infrastructure security company Wiz on
Thursday revealed details of a now-fixed Azure
Cosmos database vulnerability that could have
been potentially exploited to grant any Azure
user full admin access to other customers’
database instances without any authorization.
[. . . ]

Critical Cosmos
Database Flaw Af-
fected Thousands
of Microsoft Azure
Customers

Multiple Choice (MC)

SecMMLU Please assess the cybersecurity question and in-
dicate the most suitable answer among the given
choices.

Question: SHA-1 has a message digest of A.
160 bits B. 512 bits C. 628 bits D. 820 bits

A

CyQuiz Considering the cybersecurity subject matter,
pick the most accurate solution for the presented
question.

Question: You are at a coffee shop and connect
to a public wireless access point (WAP). What a
type of cybersecurity attack are you most likely
to experience? A. man-in-the-middle attack B.
back door C. logic bomb D. virus

A

Text Classification (TC)

MITRE Examine the procedure example and ascertain
the appropriate MITRE ATT&CK technique ID
and name.

APT41 used a compromised account to create a
scheduled task on a system.

T1053.005 Scheduled
Task/Job: Scheduled
Task

CVE Based on the CVE description provided, de-
termine the appropriate severity level: critical,
high, medium, or low.

Improper conditions check in some Intel(R)
Ethernet Controllers 800 series Linux drivers
before version 1.4.11 may allow an authenti-
cated user to potentially enable information dis-
closure or denial of service via local access.

high

Web Examine the URL and categorize it as phishing
or legitimate.

http://rgipt.ac.in legitimate

Email Identify if the given email is phishing or safe. the other side of * galicismos * * galicismo *
is a spanish term which names the improper in-
troduction of french words which are spanish
sounding and thus very deceptive to the ear . *
galicismo * is often considered to be a * bar-
barismo * . [. . . ]

safe

HTTP Evaluate the HTTP request below and classify it
as either normal or anomalous.

GET [. . . ] HTTP/1.1 User-Agent: Mozil-
la/5.0 (compatible; Konqueror/3.5; Linux)
KHTML/3.5.8 (like Gecko) Pragma: no-cache
Cache-control: no-cache [. . . ]

anomalous

Table 3: Examples of instructions, inputs, and outputs from the datasets in CyberBench, where [...] represents the omitted text.
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Model Average CyNER APTNER CyNews SecMMLU CyQuiz MITRE CVE Web Email HTTP

- - F1 F1 R-1/2/L Acc. Acc. Acc. Acc. F1 F1 F1

Embedding model: text-embedding-ada-002-2

GPT-35-Turbo 61.9 28.2 40.0 35.5/15.4/30.3 80.0 82.0 55.5 61.1 87.0 77.6 80.3
GPT-4 70.9 54.4 48.8 36.2/15.8/31.4 84.0 82.0 68.8 66.4 95.7 94.1 87.4

Embedding model: all-mpnet-base-v2

GPT-35-Turbo 62.6 33.4 40.9 35.5/15.4/30.3 78.0 83.0 54.5 58.0 89.2 78.9 83.1
GPT-4 69.6 55.4 50.0 35.9/15.5/31.2 83.0 81.0 64.9 63.0 95.4 93.9 84.1

Table 4: Comparisons of OpenAI models on CyberBench with two embedding models, text-embedding-ada-002-2
and all-mpnet-base-v2, for retrieving five-shot similar examples besides the summarization task.

Model N.S. Average CyNER APTNER CyNews SecMMLU CyQuiz MITRE CVE Web Email HTTP

- - - F1 F1 R-1/2/L Acc. Acc. Acc. Acc. F1 F1 F1

Examples selected by similarity

Llama-2-7B 1 28.4 15.2 18.2 0.3/0.3/0.3 48.0 47.0 24.2 46.9 22.0 25.4 36.7
5 50.6 26.3 28.0 0.3/0.3/0.3 63.0 62.0 44.6 64.7 79.9 94.2 42.8

Llama-2-7B 1 26.8 7.3 9.3 25.2/9.6/21.6 57.0 52.0 18.3 35.7 20.1 8.2 41.1
-Chat 5 44.6 22.7 25.4 25.2/9.6/21.6 60.0 56.0 41.6 52.5 48.4 79.4 41.0

Examples selected randomly

Llama-2-7B 1 29.2 10.0 9.4 0.3/0.3/0.3 39.0 51.0 1.3 42.6 57.2 53.4 27.5
5 35.3 18.7 17.7 0.3/0.3/0.3 63.0 59.0 3.9 46.4 62.3 58.6 23.1

Llama-2-7B 1 32.6 8.8 8.8 25.2/9.6/21.6 52.0 53.0 1.2 34.0 51.5 49.9 48.5
-Chat 5 38.6 17.2 16.9 25.2/9.6/21.6 57.0 58.0 4.5 35.5 70.4 61.5 46.1

Table 5: Comparison of Llama-2-7B models with different few-shot examples on CyberBench. The zero-shot setting is always
used for the summarization task. “N.S.” is the number of shots.

Model Quant. Average CyNER APTNER CyNews SecMMLU CyQuiz MITRE CVE Web Email HTTP

- - - F1 F1 R-1/2/L Acc. Acc. Acc. Acc. F1 F1 F1

Llama-2-7B 4 Bit 50.3 27.2 27.8 1.0/0.4/0.8 60.0 57.0 43.1 63.0 82.2 93.6 48.2
8 Bit 51.0 25.6 27.7 0.3/0.3/0.3 65.0 62.0 45.2 63.9 81.6 93.7 45.1
Full 50.6 26.3 28.0 0.3/0.3/0.3 63.0 62.0 44.6 64.7 79.9 94.2 42.8

Llama-2-7B 4 Bit 45.4 22.7 27.2 24.1/9.3/20.8 60.0 50.0 40.7 52.7 60.2 85.7 36.2
-Chat 8 Bit 44.9 21.3 25.5 25.2/10.1/21.7 59.0 59.0 41.1 52.7 50.3 82.7 38.3

Full 44.6 22.7 25.4 25.2/9.6/21.6 60.0 56.0 41.6 52.5 48.4 79.4 41.0

Table 6: Comparisons of Llama-2-7B models with different quantization precisions, including 4 bits, 8 bits, and full precision,
on CyberBench, where all-mpnet-base-v2 embedding model is used for retrieving five-shot similar examples besides the
summarization task.
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