

Multi-Agent Collaboration in Incident Response with Large Language Models

Zefang Liu (Georgia Institute of Technology) Contact: liuzefang@gatech.edu

Overview

- Incident response (IR) is essential for cybersecurity, requiring quick decision-making and coordination.
- Large Language Models (LLMs) can serve as intelligent agents to enhance collaboration and efficiency.
- LLM-based multi-agent collaboration in cybersecurity is explored using Backdoors & Breaches, a tabletop game designed for IR training.
- Different **team structures (centralized, decentralized, hybrid)** are analyzed to evaluate their impact on IR effectiveness.

Backdoors & Breaches

A tabletop game that simulates real-world cybersecurity incidents.

- Players take on roles as incident captain and defenders, working together to uncover and mitigate attack vectors.
- The game includes different card types:
 - Attack Cards: Represent stages of a cyberattack (e.g., initial compromise, pivot and escalate, command and control (C2) and exfiltration, and persistence).
 - Procedure Cards: Defensive strategies used to detect and counter threats.
 - o Inject Cards: Unexpected events that introduce new challenges.
- The goal is to **reveal all hidden attack cards** within limited turns through strategic decision-making.

Experimental Results

- **Centralized teams** perform well due to clear leadership but may struggle with adaptability.
- Decentralized teams leverage diverse expertise but can have coordination challenges.
- Hybrid teams balance structured leadership with flexibility, leading to strong performance.
- **LLM-based agents** facilitate IR processes by assisting in decisionmaking and coordination.

Team	Success	Failure	Pentest	Invalid
Homo-Cen	14	1	2	3
Heter-Cen	13	3	3	1
Homo-Dec	13	1	1	5
Hetero-Dec	12	3	3	2
Homo-Hyb	14	3	2	1
Hetero-Hyb	13	1	2	4

Case Studies

- Homogeneous Centralized: Over-reliance on high-modifier procedures led to poor adaptability.
- Heterogeneous Centralized: Struggled with prioritization and aligning expert inputs.

Experimental Setup

- LLM-based agents: Implemented using AutoGen, with structured roles and interactions.
- Team structures:
 - **Centralized:** Leadership-driven decision-making.
 - **Decentralized:** Equal decision-making across all agents.
 - **Hybrid:** Mix of leadership and collaboration.

- Homogeneous Decentralized: Slow decision-making and overuse of standard procedures.
- Heterogeneous Decentralized: Lack of coordination led to missed attack indicators.
- Homogeneous Hybrid: Misprioritized investigations delayed threat detection.
- Heterogeneous Hybrid: Expertise misalignment caused early attack stages to be overlooked.

Conclusion & Future Work

- LLMs demonstrate strong potential in multi-agent collaboration in incident response and cybersecurity.
- Future directions includes:
 - Improving adaptability of LLMs for unpredictable cyber threats.
 - Extending simulations to real-world cybersecurity environments.
 - Exploring human-LLM hybrid teams for incident response.

References

Young, Jacob, and Farshadkhah, Sahar. "Backdoors & Breaches: Using a Tabletop Exercise Game to Teach Cybersecurity Incident Response." *Proceedings of the EDSIG Conference ISSN*. Vol. 2473. 2021. Wu, Qingyun, et al. "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation." *ICLR 2024 Workshop on Large Language Model Agents*. Liu, Zefang. "Multi-Agent Collaboration in Incident Response with Large Language Models." *AAAI 2025 Workshop on Multi-Agent AI in the Real World*.

• **Success rate** in uncovering all attack stages.

• **Failure patterns** across different team structures.

Acknowledgment: Backdoors & Breaches, developed by <i>Black Hills</i>
Information Security and Active Countermeasures, provided the structured
framework for simulating incident response scenarios in this study.

