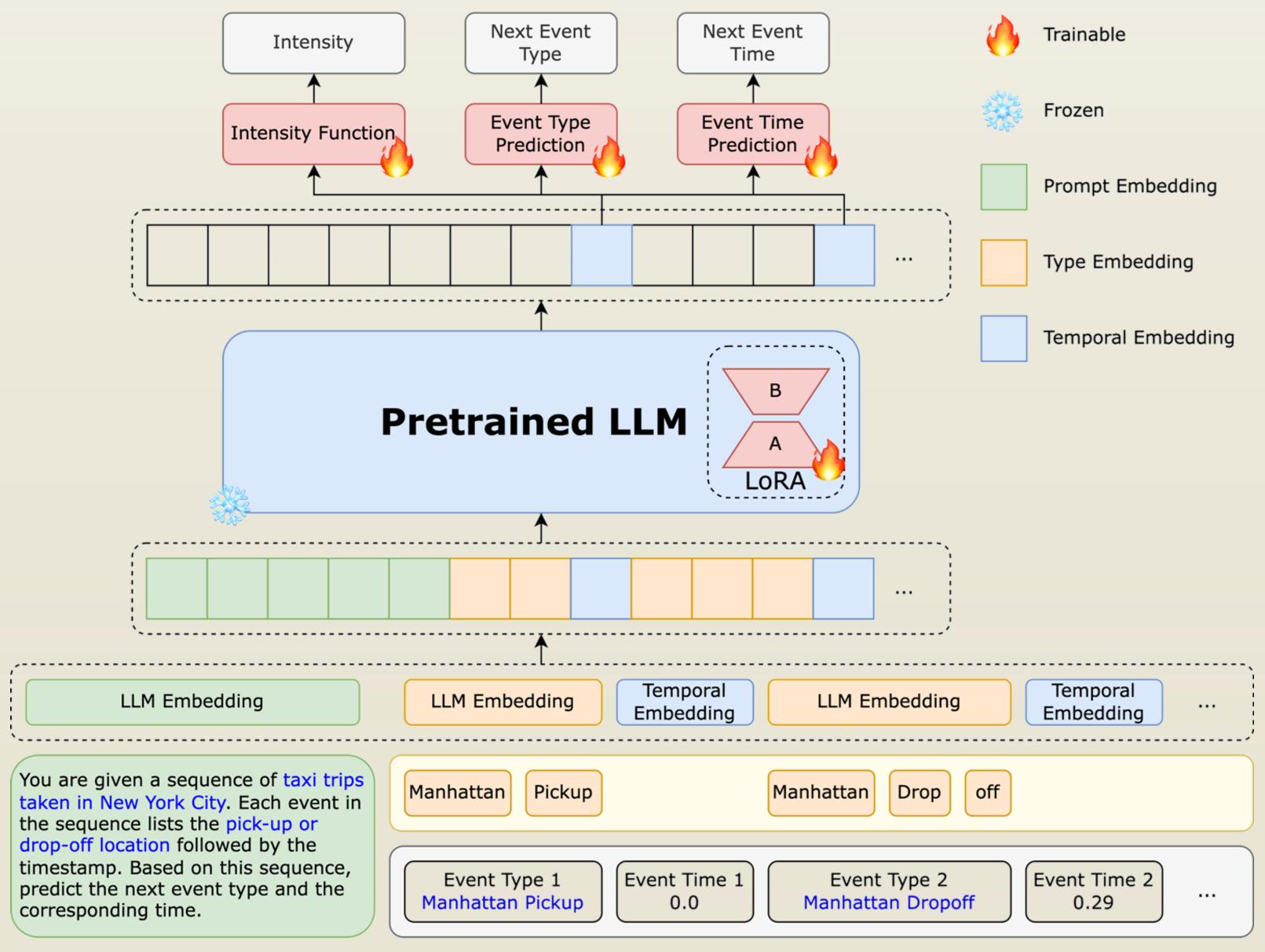


TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models

Zefang Liu, Yinzhu Quan (Georgia Institute of Technology) Contact: liuzefang@gatech.edu

Introduction

- Temporal Point Processes (TPPs) are essential for modeling sequences of events over time in domains such as social networks, urban mobility, and e-commerce.
- Traditional TPP models struggle to capture both semantic richness and complex temporal patterns, often relying on categorical event representations and handcrafted features.
- **TPP-LLM** introduces a novel integration of **Large Language Models (LLMs)** with **TPPs**, enabling semantic-aware and temporally-informed event prediction.



Preliminaries

- **Marked TPPs** model event sequences $S = {(t_1, k_1), ..., (t_n, k_n)}$, where each event has a timestamp t_i and type k_i . The goal is to predict the next event's time and type given the history \mathcal{H}_t .
- The conditional intensity function λ(t, k|H_t) defines the instantaneous rate of observing an event of type k at time t:

$$\lambda(t, k | \mathcal{H}_t) = \lim_{\Delta t \to 0} \frac{\mathbb{E}[N_k(t + \Delta t) - N_k(t) | \mathcal{H}_t]}{\Delta t}$$

• **Neural TPPs** use models like RNNs or transformers to learn the intensity function from data. Given event embeddings e_i , hidden states are updated via $h_i = f(h_{i-1}, e_i)$ to capture complex temporal and type

Prompt

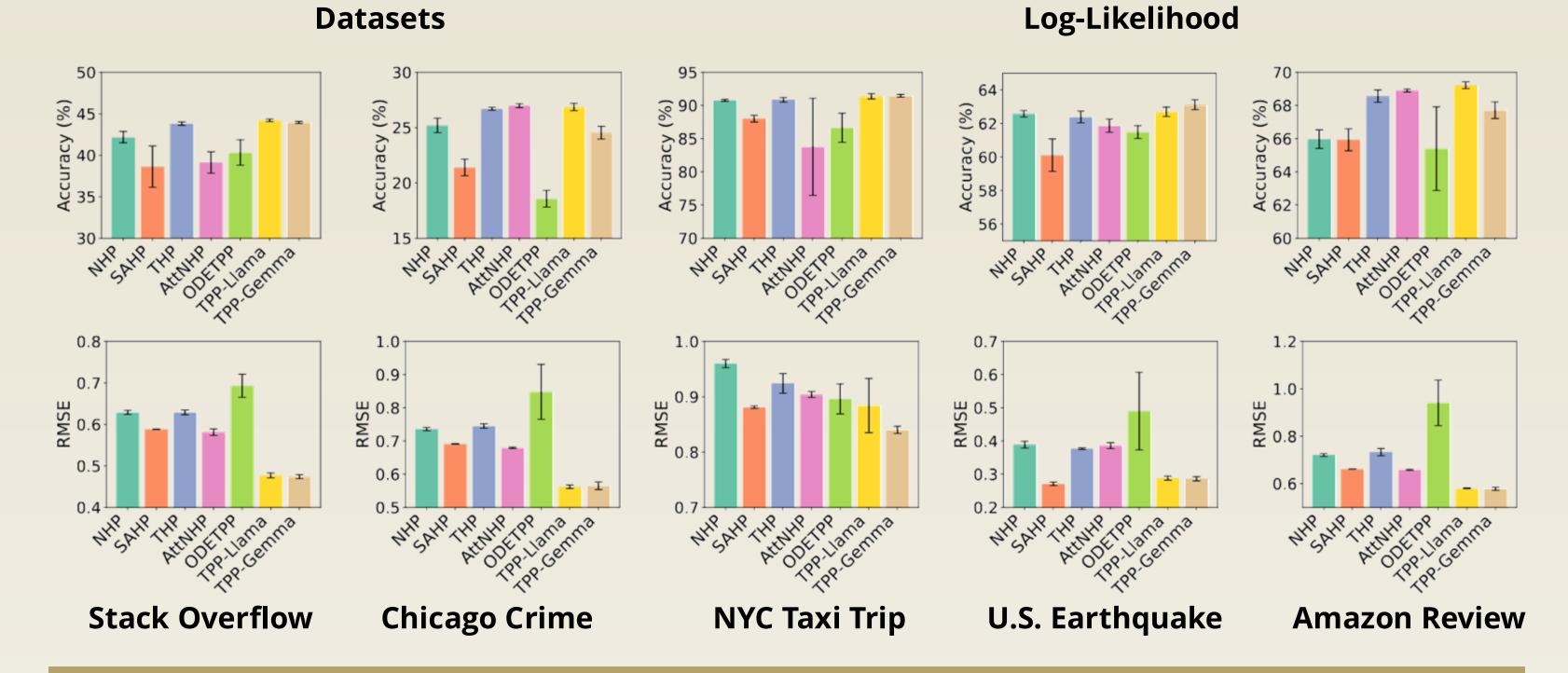
Event Sequence

Dataset	# of Types	# of Events	# of Seq.	Model	StackOverflow	Crime	Taxi	Earthquake	Amazon
Stack Overflow	25	187,836	3,336	NHP SAHP	-2.005 -6.320	-2.604 -6.069	$\frac{0.366}{-0.228}$	<u>-0.450</u> 0.193	-1.196 -4.201
Chicago Crime	20	202,333	4,033	THP	-0.320 -1.877	-2.493	0.228	-0.513	-4.201
NYC Taxi Trip	8	362,374	2,957	AttNHP	-1.798	-2.432	0.446	-0.481	-0.959
U.S. Earthquake	3	29,521	3,009	ODETPP	-2.402	-4.152	-0.450	-0.511	-1.808
Amazon Review	18	127,054	2,245	TPP-Llama TPP-Gemma	-1.777 -1.785	$\frac{-2.451}{-2.480}$	$0.271 \\ 0.332$	-0.475 -0.479	$\frac{-1.011}{-1.075}$

dependencies.

Methodology

- TPP-LLM models event sequences by combining textual descriptions of event types with temporal embeddings, enabling the model to learn both semantic and temporal patterns.
- Each event type k_i is tokenized and embedded using a pretrained LLM, while the corresponding time t_i is mapped to a temporal embedding f_{temporal}(t_i), such as sinusoidal positional encoding.
- The combined embeddings are processed by a decoder-only transformer, generating hidden states h_i used to compute:
 - The **intensity function**: $\lambda_k(t|\mathcal{H}_t) = \text{softplus}(\alpha_k(t t_i) + w_k^T h_i + b_k).$
 - The **next event type**: $\hat{k}_{i+1} = \operatorname{argmax}(W_{\text{type}}^T h_i + b_{\text{type}}).$
- The **next event time**: $\hat{t}_{i+1} = \boldsymbol{w}_{\text{time}}^T \boldsymbol{h}_i + b_{\text{time}}$
- LoRA-based fine-tuning is applied to adapt the LLM efficiently by injecting trainable low-rank matrices into attention layers, reducing the number of parameters



Experiments

- Evaluated on five real-world datasets: Stack Overflow, Chicago Crime, NYC Taxi, U.S.
 Earthquake, and Amazon Review, each with event timestamps and textual type descriptions.
- Compared with neural TPP baselines: NHP, SAHP, THP, AttNHP, and ODETPP, using loglikelihood, type prediction accuracy, and time prediction RMSE.
- Built on lightweight foundation models, including **TinyLlama-1.1B** and **Gemma-2B**,

while preserving performance.

Conclusion

- TPP-LLM integrates pretrained LLMs with TPPs, enabling joint modeling of event semantics and temporal dynamics for improved event prediction.
- Through PEFT, the model achieves strong performance across diverse real-world datasets, consistently outperforming existing baselines in both sequence modeling and event prediction.

References

- Mei, Hongyuan, and Jason M. Eisner. "The neural Hawkes process: A neurally self-modulating multivariate point process." *Advances in neural information processing systems* 30 (2017).
- Zhang, Qiang, et al. "Self-attentive Hawkes process." *International conference on machine learning*. PMLR, 2020.

